Assume that we go up the thirteen steps only by 1 step, and that we do not take steps two-at-a-time.
This is equivalent to asking how many ways are there to order a sequence of 13 ones.
There are only ${ }_{13} \mathrm{C}_{0}$, or only 1 way to go up the steps.
Now, assume that we go up the thirteen steps, and this time we only have one step that is two-at-a-time.
This is equivalent to asking how many ways are there to order a sequence of 11 ones and 1 two.
There are ${ }_{12} \mathrm{C}_{1}$, or 12 ways to get up the steps.
We continue with going up the steps, two of the steps being two-at-a-time.
This is equivalent to asking how many ways are there to order a sequence of 9 ones and 2 twos.
There are ${ }_{11} \mathrm{C}_{2}$, or 55 ways to get up the steps.
Following the same logic,
For three of the steps being two-at-a-time, there are ${ }_{10} \mathrm{C}_{3}$, or 120 ways to get up the steps.
For four of the steps being two-at-a-time, there are ${ }_{9} \mathrm{C}_{4}$, or 126 ways to get up the steps.
For five of the steps being two-at-a-time, there are ${ }_{8} \mathrm{C}_{5}$, or 56 ways to get up the steps.
For six of the steps being two-at-a-time, there are ${ }_{7} \mathrm{C}_{6}$, or 7 ways to get up the steps.
And there are no more cases available.

Thus, the total number of ways is $1+12+55+120+126+56$ +7 , or 377 ways in total.

Generalising the Result:

We could express the number of ways to get up the steps for each case based on the number of two-at-a-time steps, which we will call α, and the total number of steps, which we will call β : $\beta-\alpha \mathrm{C}_{\alpha} \alpha$ and β are both integers in this case.

By definition of a combination, the number to the left, in this case $\beta-\alpha$, has to be equal or greater than the number on the right, or in this case, $\alpha: \beta-\alpha \geq \alpha$. Adding α to both sides and dividing by 2 , we get $\alpha \leq \beta / 2$. Thus, the number of two-at-atime steps possible in a series of β steps is $0 \leq \alpha \leq \beta / 2$, but since α is always an integer, we can use the floor function on the inequality, $0 \leq \alpha \leq\lfloor\beta / 2\rfloor$.

Now, the total number of ways to get up the steps is just the sum of the number of ways for each case, so we calculate the following summation:

```
| \(1 / 2 \mid\)
\(\sum_{\alpha=0}{ }_{\beta-\alpha} \mathrm{C}_{\alpha}=\mathrm{F}(\beta+1)\)
```

The summation, for any total number of steps β greater than zero, is equivalent to the $(\beta+1)$ th Fibbonacci number $F(\beta+1)$, the proof of which will not be shown here, but it can be proved using induction and the theorem ${ }_{n} C_{m}+{ }_{n} C_{m+1}={ }_{n+1} C_{m+1}$ or
Zeckendorf's theorem. One can calculate the Fibbonacci number $\mathrm{F}(\mathrm{n})$ using Binet's formula:

$$
\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

